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Abstract paper. The paper effects are represented in the theory by
a point spread function (PSF), which is a conditional
The scattering of light within paper can affect the toneorobability density that characterizes the photon migra-
characteristics of a printed halftone image. A halftondion within the paper. It is shown that the effect that light
image is formed by variation in the average reflectancescatter has on the halftone reflectance can be expressed
which is determined by the size of the ink dots. Photonin terms of a single quantity—a factor we call This
migration within the paper from noninked to inked re-factor is a function of the dot shape, dot size, screen pe-
gions tends to increase the photon absorption and thusd, and the paper’'s PSF.
decrease the halftone reflectance—the dots are effec- The paper’s point spread function characterizes the
tively larger than their physical size. This effect is knownphoton migration within the paper, which depends on
as optical dot gain or as the Yule-Nielson effect. Thahe paper’s scattering and absorption characteristics, and
degree of optical dot gain depends on the distance than the thickness of the paper. In the second part of the
the photons migrate within the paper, which in turn dearticle, we construct a model of photon transport within
pends on the paper’s scattering and absorption charathe paper by solving the transport equation using a dif-
teristics, and on the thickness of the paper. We developfasion approximatiori? From this we derive the diffu-
theory that expresses the halftone reflectance in termson point spread function.
of the halftone microstructure—the screen period, dot  Using the diffusion PSF, we show plots of the half-
size, dot shape, and ink transmission—and the effectone reflectance for several typical values of the paper’s
due to the paper. The paper effects are represented in tharameters. We introduce a phenomenological expres-
theory by a point spread function, which is a conditionakion forZ with one adjustable parameter and compari-
probability density that characterizes the photon migrasons are made between the phenomenolodieald the
tion within the paper, and by the paper’s reflectance. WexactZ as calculated with the diffusion PSF.
construct a model of photon transport within the paper In the third part of the article, we interpret the ex-
by solving the transport equation using a diffusion appanded Murray—Davis modedf halftone reflectance in
proximation, from which we derive a point spread func-terms of the theory developed here by giving a probabi-
tion. We interpret the expanded Murray—Davies modelistic interpretation of optical dot gain—the various pro-
of halftone reflectance in terms of the theory develope@esses that give rise to optical dot gain are described in
here by giving a probabilistic interpretation to opticalterms of probabilities. We show thatan be interpreted
dot gain. We show that optical dot gain can be related tas a probability: the conditional probability that a pho-
a single numerical parameter. Using the diffusion pointon emerges from the paper through a dot if it originally
spread function, we show how this parameter is relatedntered the paper through a dot. We show that all other
to the physical quantities that characterize the paper. probabilities describing the effects of optical dot gain
can be obtained from this “dot—dot” probability.
Introduction
Halftone Reflectance
Recently there has been interest in the scattering of light
within paper and the effect this scattering has on the ton@ the following, we obtain an expression for the half-
characteristics of a printed halftone imadge halftone  tone reflectance (the average reflectance) from a region
image is formed by variation in the halftone reflectancepf the halftone print, in terms of the halftone microstruc-
which is determined by the size of the ink dots. Phototure—the ink transmission and the size and shape of the
migration within the paper, from noninked to inked re-ink dots—and the effects of the paper.
gions, tends to increase the photon absorption and thus The ink is laid onto the paper in the form of circular
decrease the halftone reflectance—the dots are effedots with radiugd, and the dot centers fall on a square
tively larger than their physical size. This effect is knowngrid array (screen grid) with screen periadWe con-
as optical dot gain, or as the Yule-Nielson effect, andider a region of the halftone image that has a constant
depends on the characteristics of the paper. This effetbne, i.e., the size of the dots is constant over the region
is particularly pronounced when the distance the phoand the region is large compared to the screen period.
tons migrate is comparable to the screen period. The average reflectance is found by averaging the
In the first part of this article, we develop a theorypoint reflectance over the region:

that expresses the halftone reflectance in terms of the
halftone micro-structure—the screen period, dot size, dot

! e— R(x,y)dA, (1)
shape, and ink transmission—and the effects due to the

1
- (N,.)Z J—(region)
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wheredA=dxdyis an element of aredl? is the number is equal to O for those points,{) where there is no ink,
of dots in the region, andNf)? is the area of the region. and is equal to 1 for those points where there is ink.
The region consists df? cells of area?, and each cell Expanding Eqg. 2 using Eq. 3 one obtains for the point
contains one dot. (For simplicity, in all that follows, we reflectance:
take the limitN - o.)

The point reflectancB(x,y) is the reflectance at the R(x,y) =[1-(1-T) C (x,y) — (1 =T)P(x,y)

point (x,y) and is given by +(1-T)?C (xy) PKYI R, (7)
R(x,y) = whereP(x,y) is defined as:
0 0o , , o o , B (2)
R, T(x, y)J’_mJ'_m T(x',y)H(x - x',y -y )dx'dy'. Plx,y) =
- . N 8
The quantityH(x—x', y —y' is the point spread function, [[Cx'y)H(x -2,y = y")dx'dy". (8)

andRH(x — X', y — V') is the probability per unit area

that a photon entering the surface of the paper at poifithe quantityP(x,y) is a double convolution and can be
(X',y') exits the paper at a poink,Y). The bare paper has evaluated by taking the inverse Fourier transform of the
diffuse reflectance dERp, soH(x,y) is normalized to unity. product of the Fourier transforms of the convolution op-
It is assumed that the paper is isotropicH¢w,y) is ra-  erands.

dially symmetric: The Fourier transform d®(x,y) is
_gOf.2, 20_ F{P(x,y)} =
H(x,y) = Hpyx™ +y H(p),
0 2 F {cirelp/ dIIF (g(x, y)IF {H(x, ). ©)

wherep is the polar radial coordinate.
The transmission functiof(x,y) is the transmittance The Fourier transform of cir@[d] is readily obtainet:

of the ink layer at pointx(y). Certainly, those areas of

the paper between the dots (no ink) have transmission , J,27kd)

of 1. The areas covered by ink have a transmisgjon Flcirc[p/dl} =d T

One can express the transmission function as:

(10)

_ whereJ. (X) is a first-order Bessel functidais the mag-
Txy) =1-(1-T) C(xy), ) nitude éf the two-dimensional spatial frequency (in cycle/

; P e unit length).

where the functio (x,y) is 1 if there is ink ax,yand O . .

. . , . L . The Fourier transform of the dot distributig(x,y)
if there is no ink ax,y. This function is a convolution of is also readily obtained:

the distribution function for the dots, and a function that
describes the shape of the dots:

1
Flglx,y)} = = Ok, —n/r)d(k, —m/r1), (11)
[I\ 22 +y2 0 "
Clox, ) = C“’chgk 8> (4)  wherek andk are thexandy components of the spatial

u u frequency.
The Fourier transform dfi(x,y) is the optical trans-
where the * indicates a convolution. The distributionfer function (OTF) of the papétBecause of the assumed

function for the dotg(x,y) is: symmetry and reality dfi(x,y), the paper’'s OTF is iden-
tical to its modulation transfer function (MTF) and is
g(x,y)= Y 8(x~nr)d(y - mr), 5) radially symmetric in frequency space:
H(k) =F{H(x,y)}, (12)

wherer is the dot spacing (screen period) ang) d§ a
Dirac delta function. The cirald] is the shape function

for circular dots and is defined by: where we definel (k) as the MTF of the paper.

Taking the inverse Fourier transform of Eq. 9, one
obtains forP(x,y):
. O, usd
circlu/d] = %) o d (6) P(x,y) =

nd?
with d the radius of the dots. Thus, the expression r?

>

> | H, expl-27(nx+my)/rl, (13)

n,m

where we define

Ofe. _ 2 _ 2 0
Clxy) = Y cire DM FLZM
wme g 0 Jl%ﬂ\/n2+m2d/r5

e n\/n2+m2d/r

(14)
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and
ﬁnm =HWn?+m? /r).

Note thatJ,, = Hy, = 1.

(15)

Z = Z|Inm|21:1nm7 (22)

The serieZ completely contains the effects of the
optical dot gain. It is a function of dot shape, dot size,

One obtains the halftone, or average, reflectancecreen period, and the scattering characteristics of the

from the region by averaging the point reflectaRfey)

paper. It is shown in the section on Dot and Nondot Re-

over allx,y. Using Eq. 7 in Eq. 1, there are four terms toflectance thapZ is the probability that a photon exits
integrate. The first term is clearly equal to 1. The secthe paper through a dot if it originally entered through a

ond term is:

O/.2 2 0
(1-Ty) 1 J'Icircm xry Ut g dxdy =
(Nr)? 0O d [
U U (16)

(1-Ty)m(d / r)?.

The third term is:

1 _
(A-Ty) gz [ [Py dedy =
17)

(1-To)n(d /r)?,

becauseH(x,y) is normalized to 1.
The fourth term is:

_p2_ 1 ol
(1-Ty) S IICHCE p
2 )

. Qx-n'r)?+(y-m'rn?0
XJ’J'cu"c% p

=

*g P(x,y) dxdy =

[

Substitutingu = x —n'r andv =y —m'r the double inte-
gral above can be written:

[ 2, 20
exp[-2mi(nn'+mm’ )]J’J’circ El\u a
H (@19

xexpl2mi(nu + mv)/ rldu dv.

The first exponential is equal to 1 for alim,n’,m’,
and the double integral is identicaiig?J;,,, so that the
fourth term is

(d/r*A-T)* S Yl Ho-

n,m

(20)

gexp[—z mi(nx + my) / rldx dy.

dot and that one can interpi&t! as an effective scatter-
ing area.

Although the expression fakR has been derived for
circular dots, the average reflectance has the same form
as Eq. 21 for dots of any shape, witlgiven by Eq. 22
and the definition of generalized. If the dots have a
shape function given bw(x,y), and lie on a grid with
periodr, then one define} as

IIw(x, y)expl2mi(nx + my) / rldx dy
”’w(x,y)dx dy '

J =

nm

(23)

For example, if the dots are square with sides of length
d, thenw(x,y) = rectf/d) rectfy/d), where rectf) = 1 if
|ul < 1/2 and zero otherwise, and

J.m = sinc drr) sinc ndr),

with sinc {) = sin(v)/(Tv). _

To give the expression foR a physical meaning,
we consider two extreme cases: the lateral scattering
length is much larger than the screen period and the lat-
eral scattering length is much smaller than the screen
period. (We seR = 1 for simplicity.) The lateral scat-
tering length is defined as the first momentgp),

(p) = [PH(p)dA,

and is the average lateral distance a photon travels. The
value 1/(p) is approximately the spatial bandwidth of
the paper.

If (p) is much larger than the grid lengt{m)/r > 1,
then H(k) =0 for k= 1/r. Therefore,H,,, =0 for n,m#
0, and

(24)

Z=1. (25)
The average reflectance in this case is
R=1-21-Tyu+(1-Ty?u? =
(26)

=[1-p(1-Ty)1%.

Thus, one writes the average reflectance from the region as

E=R,[1-20(1-T)+ *(1-T*Z],  (21)

wherep is the fractional area covered by the dats
m(d/r)?, and

* This expression foZ with J,, given by Eq. 14 is strictly correct only

for d<r/2 (orp < 174), such that no dot overlap occurs. <ps<
1, thenu = (W2 — D + sin®)/(1 + cos B) with coH = 2/(A), and]J,,

The reflectance of the ink i, =T (the paper re-
flectance is taken to be 1), so the average reflectance
can be expressed as:

R =[1-p(1-RY?*)P?, (27)

which is the Yule-Nielson equatibwith n = 2. One can

is somewhat different from Eq. 14, but can be readily calculated frominterpret this equation in terms of probabilities by writ-

Eq. 23.
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Paper consists of a very complex network of lay-

E:“Ril/z[(l‘“““Ril/z]” ered cellulose fibers plus filler pigments such as tita-
1= (1) + pRY2 (28) nium dioxide or calcium carbonateThe transparent,
H [ H i ] flattened fibers have ~7jim width, ~8um thickness?

_ and an index of refractidhn = 1.5 so that light is scat-
One can interpreR as the probability that an inci- tered as it enters and exits a fiber as well as being inter-
dent photon is reflected from the pap@R!? as the nally reflected within the fiber. The thickness of paper
probability that the photon enters the paper through atnewsprint or bond) is typically 10 to 18 fiber layéts.
inked area, and (11 as the probability the the photon The degree of absorption within white paper is quite
enters the paper through a noninked area. The photon ssnall—the paper opacity is due to scattering.
said to be “completely” scattered if the probability that Our model treats the paper in a simplified way. We
it exits through an inked or noninked area is proportionaignore fiber orientatiod? and multilayer structur#,and
to the ink and noninked areas and is independent afe assume that the paper is isotropic and homogeneous.
whether the photon entered through an inked or noninketihe validity of these assumptions is discussed in the con-
area, as indicated in Eq. 28. The first term on the rightlusion. We do not consider the fiber network as such,
represents light entering the paper through an inked ardat we characterize the paper by its thickness and by
and the second term represents light entering the papavo experimentally determined parameters that charac-
through noninked regions. For both, after entering theerize scattering and absorption. In the section on Half-
paper, the light is “completely” scattered, and exits througlione Reflectance with Diffusion PSF, we indicate how
a nondot region with probability 1 +and though a dot these parameters can be measured. Our analysis assumes
with probabilityp R¥2 ThatZ = 1 indicates that the light uncoated paper, but the model can be adjusted in a simple
is completely scattered and a high degree of optical datay to include coated pap&As most papers consist of
gain exists. This interpretation is generalized in the secapproximately equal volumes of cellulose and*awge
tion on Dot and Nondot Reflectance. consider the “paper medium” to be cellulose with index
If the lateral scattering length is very small com-n= 1.5 and that the photons scatter at the fiber—air bound-
pared to the grid lengthip)/r - 0, then H(k)=1 for  aries within the paper.
all k < 1/ {p) - ».Then H,,, =1 for all relevantn,m, In our model, photons are incident on the paper sur-
andZz=3 [J [ This sum can be evaluated exactly byface at a single point and these injected photons are scat-
using the definition of . Eq. 23, and noting that(x,y)”  tered within the paper. We calculate the distribution of
=w(x,y), > exp[2min(x —x)/r] = rd(x —x'), andf w(x,y) these scattered, nearly diffuse, photons. The diffusion
dx dy = rd?. One finds point spread function is the normalized outward flux of
these diffuse photons as a function of the distance from
Z =1/ (29) the point of incidence.
Because of the symmetry, we work in cylindrical co-
The average reflectance in this case is ordinates, z, ¢ and choose theziaxis perpendicular to
and pointing into the paper surface (pointing downward),
R=1-u(1-R,). (30)  with z= 0 on the paper top surface, the side from which
the light is incident. The light is incident on the paint
This is the Murray—Davies equatiét’the average =0,p =0, and is traveling in thezdirection. The paper
reflectance without scattering within the paper, which ishas thicknesg so the bottom surface of the paper ig at
the Yule-Nielson equation with = 1. In this case no = +.
optical dot gain occurs. Our model treats photons as billiard balls undergo-
ing elastic collisions with stationary scatterers and trav-
Photon Transport and the Diffusion PSF eling at the speed between collisions. We assume any
interference effects average to zero. All the material
In this section we obtain the distribution function for quantities are wavelength independent, consistent with
the photons within the paper by solving the transporbur assumption of “white” paper and “black” ink. The
equation using a diffusion approximatié 151617181920 quantities that describe the photon flux are implicitly
The photon distribution is then used to construct a diffuwavelength dependent, and for simplicity we assume
sion point spread function. arbitrary monochromatic radiation.
The diffusion approximation assumes that any pho-
ton current is due only to gradients in the photon denbiffusion Equation
sity. A number of authot$!*2°have discussed the We assume that a stream of photons traveling in the
conditions under which this approximation is valid: (1) +z direction is incident on the paper at the origin. The
that the albedo be close to 1 and (2) that the averageattering of these injected photons is the source of the
distance that light travels in the medium be greater thadiffuse photons.
the transport mean free path or, equivalently, that the We start with the steady-state transport equation for
optical thickness be greater than 1. As discussed belowhe photon distributioh
these conditions are amply satisfied by most papers.

Groenhuis et al® compared the diffusion approximation § Mf (r,8) =
to a Monte Carlo calculation, and found excellent agree- oy . . (31)
ment for the range of parameters we use here. —th(r,S)+ﬁj’(mp(s,S')f(r,S')dQ’,
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where f(r,s), the photon distribution, is the number of d

photons per unit volume per unit solid angle at position d—fi(r,é) =—y,fi(r,8),
r travelling in directions. This is related to the specific z
intensityl(r, s) (power per unit area per unit solid angle)
asl(r,s) = cef(r,s) where e is the energy of the mono-
chromatic photons. Below we separate the photon dis-
tribution function into two parts: one part describing the
injected photons and the other the diffuse photons. The
extinction coefficient isy, =y_ +y, withy, y, the scat-
tering and t_he apsgrphon coeff|C|_ents, r_espect_wely. Th%vheref; is a unit vector along thezdaxis andS  is the
phase functiop(s,s') is the normalized differential scat- 0

tering cross section and is the probability per unit solidmmber of photons per unit time injected.
angle that a photon originally traveling in directighis The transport equation for the diffuse photon distri-

so that the distribution of injected photons is

58k —1)

exp(=yy2) — —

. Sp0(p)
fi(r,s)= o (36)

traveling in directions after scattering. The phase func- bution is

tion is normalized such that 14 p(s,s")dQ' =1 and

depends only on the angle betweeands': p(s,s') = 50 8- N 5d0Q’ LS

p(s*s'). Following Groenhuis et at?>we choose a phe- Sfa(r,8) ==y, fa(r,s)+ 4nJ24n)fd(r’s ) N (r),

nomenological phase function that consists of a term rep- (37)

resenting isotropic scattering and a term that represents

forward scattering where the source term for the diffuse photons is
p(8,8)=(1-g)+4m5(S 5 -D), (32) S =cyy' [, fir,8)dQ'=

whereg is the average cosine of the scattering angle, ys'SO?exp(—yt,z). (38)

p

g=(s[38") = [p(8[3")s[3'dQ. The valueg is an anisot-
ropy parameteig = 1 indicates the scattering is forwardly
peakedg = 0 indicates isotropic scattering, agd —1 One makes the diffusion approximation by expand-
indicates the scattering is backwardly peaked. Separaiag the diffuse photon distribution in a series of spheri-
ing the forward scattered part from the isotropic part eneal harmonics and keeping only the first four terms: the
ables one to separate the photon distribution into a diffuse= 0,m = 0; and thd =1, m=-1, 0, 1 terms. One can
distribution that consists of photons whose initial injectedhen write f (r, §) as
velocity has relaxed and a distribution of photons that
have their initial injected velocities. 1 3

Using the phenomenological expressiondgses'), fa(r,8) =—u(r)+—j(r) s, (39)

- - 4 41

the transport equation can be written

whereu(r) is the diffuse phqton density (number of pho-
§f(r,8) = -y, f(r,é)‘“:—;_[umf(r,é')d@, (33) tons per unit volume) and is equal to

where the transport coefficien,, is defined by ur) = [, fa(r,8)dQ, (40)

Y, =Y, +Y, (34) andj(r) is the diffuse photon current density (number of
photons per unit area per unit time) and is equal to
with the effective scattering coefficieyf = y(1 —g).
The transport coefficient is the inverse of the transport
mean free path’ = 1A, ,'® which is the distance over
which a photon’s velocity relaxes, and is proportional to
the paper’s optical thickness=y, t. Integrating Eq. 37 over all solid angles, one obtains a
The photon distribution is separated into two partscontinuity equation

a term representing the unscattered and forward scat-
tered injected photong(r,s) and a term representing the O0(r) + y,culr) = S(r). (42)
(nearly) diffuse photong,(r, s)

i®=cf, far,85dQ. (41)

Multiplying Eq. 37 bys, using Eq. 39 forf (r, s)
f(x,8)=f;(x,8)+fy(x,8), (35) and integrating over all solid angles, one obtains

where f (r, ) describes those photons scattered such .. cC
that their initial injected velocity has relaxed afidr, i) =—
§) describes those photons that have essentially the same

velocities with which they were injected. This expression characterizes the diffusion approxi-
Inserting Eq. 35 into Eq. 33 one sees that the in- P PP

: 1 o o mation—the photon current is due only to the gradient
jected photon distribution satisfies in the photon density.

Ou(r). (43)

tr
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Combining Eqgs. 42 and 43 and defining the diffu-for the top surface and
sion coefficientD = clI'/3 =c/(3y,), one obtains the dif-

fusion equation c Do
Zu(p,t) +EEM(P,Z)|Z:F

DO%u(r) — cy u(r) = — S(r). (44) (52)

Ce D o d
=Ry E‘);u(p,t) - EEU(P,Z)lz:t O
In the following, we solve this equation, with ap- -
propriate boundary conditions, by constructing a Green’

function. ?or the bottom surface. Thus, one obtains a mixed ho-

mogeneous boundary condition for the top surface

Boundary Conditions

There are two boundaries, the top surface and the
bottom surface of the paper. (Note that we choose the +z
axis pointing downward.) Photons are incident on the
paper top surface at one point, the origin. Away from theand for the bottom surface
origin, there is no inward photon flux on the top or the
bottom surface, only an outward flux of the internally
scattered photons. There is, however, some internal re-
flection at the boundaries. This internal reflection can
be considered an inward traveling flux equal to the outwheret is the optical thickness
going flux times the Fresnel reflectane.

t o0
u(p,0) —EZU(P,Z)L:o: 0 (53)

t 0 -
u(P,t)"'EEu(P,Z)lz:t‘ 0, (54)

We define the partial photon curremtsp, z) andj_ T=y,t (55)
(p. 2
. and d is defined as
j+(p,2) = cjogaszm f(p,z;8)sdQ (45)
and _31-Rp
, - O T Ry (56)
30,2 = e [(P.59050 (46)

. . . ] ] Because of reflection at the boundaries, some inter-
wherej(p, 2) =j,(p, 2 +] (p, 2. Using Eq. 39 in Egs. 45 pg] reflection of the injected photons will occur. This

and 46, one can expressas may be significant if = 1. This can be accounted for by
. ¢~ 1. adjusting the definition of the source tei®(r). With
i:(p2) =2 ku(p,2) + 2 j(p,2) (47)  infinite multiple reflections between the top and bottom
) surfaces and normal specular reflection of the injected
or, using Eq. 43 photons, one finds the source term
j.(p,2) = i%ku(p,z) - g Ou(p, 2), (48) gy = Vs S00(p) eXP(=Vy2) + Ry exp| -y, (2t - 2)] 57)
27 1- R% exp(-27) ’

where k is a unit vector pointing in thezirection. ) ) )
As indicated above, there is no external inward flu\vhereR, is the internal normal reflectance of the in-

except at the origin. However, the internally reflected®ctéd photons, and is evaluated in the Appendix.2f
flux can be treated as incoming flux at the boundary2. the expression fdr) reverts to the previous defini-
i.e., the flux directed inward at the paper surface is equalon; Eq. 38.

to the reflected part of the outwardly directed flux. In . )

the Appendix, we show that this internal reflection canGréen’s Function Solution . .
be approximated by an effective Fresnel reflection coef- ~ 1he solution to 'Ehe diffusion equation, Eq. 44, is
ficient R, so that the boundary conditions are found using a Green’s function

u(p,2) = (D) US(p',2) G(p, z p', Z) p' dp’ dZ, (58)
where the Green'’s functid&(p,z p', Z) is the solution to

2 _CY Vo
- (p:Z>P x4 )=
(50) @j D @
=-d(p-p)d(z~-2z")/(2mp)

kG, (p,0) = Ryk G_(p,0) (49)

for the top surface and for the bottom surface

1; Ej_(P,t) = RFl; |:j+(p’t)’

where we assume a black (or no) backing. Using Egs.

47 and 43, one can express the boundary conditions agnd satisfies the boundary conditions Egs. 53 and 54.
Such a Green'’s function is given by

(59)

c D o

_u( ’O)___u( ’2) 2=0—
14P0 g e Gp,z;p',2') =
(51)

e D o O w
=Ry QU(P,0)+Egu(p,z)lzzoa z‘/"n(z)‘/"n(zy)lo(an.m /DK, (0,p. /). (60)
n=1
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Figure 1. Photon density p(z) as a function of z in units of t,

¥, = 0, andp = 0.5t. The top surface of the paperis z=0. (a)

r=1,(b)t=2,(c)r=4, (d)T=8.

The orthonormal eigenfunctions(2) defined on the
interval [0f] are

y.(2) =A, cosfy Z/t-1) (61)
with normalization factor
/2
O 4y, /'t
A, = 1
" %Zun +sin2(W, —A,) +sin2A,, E (62)
The eigenvaluep, are determined by
21U
t —_ n
anM, “?L _ (T5)2 (63)
and the phasg,_ is given by
A, ==L,
cot A, - (64)

The quantityl ) andK  are modified Bessel functions,
is defined by
0721 = “721 + 3ytr yat27 (65)
andp_ is the smaller op, p’, andp_ the larger.
Using Egs. 63 and 64, it can be shown that

M, =(M=-1)p+ 2| (66)
y,() = (1) 'y, (0)
and the normalization factor can be written as

0 2p,/¢ 07
M, +sin2A, g

so that
(67)

4 (68)

n

Inserting the expression f&(r), Eq. 57, into Eq.
58, one finds thati(p,2) is
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So 1 o LT
TR oD 2 1 1
21D 1- Ry exp(-27) 4 T° + |,

{4, (0)[(1+ 8) - Ry exp(-21)(1- 5)]
i, (O exp(-D[(1-8) - Ry (1+ 3]}y, (2)K,(0,0/ 1),

u(p,z) =

where we have used the boundary conditions, Egs. 53
and 54. Figure 1 showsp, 2) as a function of for sev-

eral values of optical thicknessOne sees that the den-

sity is maximum some distance inside the paper due to
loss of photons at the surface and that the density then
decreases at greater depths because of scattering and loss
through the lower surface. The lower the optical thick-
ness, the lower the overall density because fewer pho-
tons are scattered.

Diffusion Point Spread Function. The diffusion
point spread function is equal to the normalized diffuse
photon flux from the top surface of the paper. This can
be obtained from the partial diffuse photon current in
the -z direction, given by Eq. 46, at= 0. The diffuse
photon flux through the top surface is

F_(p)=-(1- Rp)k[3_(p,0). (70)
Using Eqg. 47 and the boundary condition Eq. 53,

one obtains for the diffuse photon flux

C l_RF

F ==
P51V R,

u(p,0). (71)

The diffuse reflectance of the paper surface is the
total diffuse flux out divided by the flux irg,

l_R 00
Ry = (YSy)[ F-(p)dA = 5 -T2, ulp.0)odp.72)

Using Eq. 69 fou(p,0), the integral over Kevaluates to
t?/g 2. Noting that ¢t/D) (1 -R)/(1 + R) = 21, Eq. 56,
that cosfi, —A,) = (=1)*'cosA , Eq. 67, and thatdcos\ /
U, = sin , Eq. 64, we can define, using Eq. 62

V1)) 1 pZsin2A,
n 1- R% exp(-21) 12 +p? p, +sin2A,
{[(1+8) - Ry exp(-21)(1-5)] (73)
H-1" exp(-T)[(1- &) - Ry (1 + 5)]}.
Thus, the reflectance can be expressed as
R,=%q,/0,. (74)

Note that ift = 2 and the scattering coefficient is
much greater than the absorption coefficient (always true
for white paper), then the expression tprcan be sig-
nificantly simplified

_ 1+9 uZsin2a,
1+(u, /12 1, +sin2A,

n
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Figure 2. Line spread function I(x), x in units of t. {&)= 1.5 andyt =
0, (b)y't=1.5andyt = 0.25, (c)y't=5.0 andyt =0, (d) y't = 5.0 and
yt = 0.25. Plots are normalized such that I(0) = 1 for comparison.
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=1.5andyt=0, (b)y't=1.5andyzt = 0.25, (c)y't =5.0 andyt =0,
(d) y't = 5.0 andyt = 0.25.
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The point spread function is the normalized diffuse

photon flux out of the surface

Hp=—T=0
2nf, F_(p)pdp
or
1
H(p) = 27‘1Rpt2 %quO(an/t). (75)

ThatH(p) is infinite at the origin is consistent wit
measurements made of the PSFs of photographic em

sions by Gilmore®

The normalized diffusion line spread function is

readily obtained from the point spread function
I(x)= [ H(p)dy

or, using Eq. 75,

10

12
T
Figure 4. Scattering lengtkp> as a function of optical thickness

mean free path constargp>is in units of mean free path (a) y, =
0, (b)y, = 0.01, (c)y,= 0.02, (d)y,= 0.03.

I(x) = o R / a,)expl-0o,|x|/t].

(76)

Figure 2 shows the LSF for varioys andy,. For
sake of comparison, the functions have been normalized
in the figure such thd{0) = 1

The MTF is readily obtained by taking the Fourier
transform ofi(x) [or the Hankel transform di(p)] and
is found to be

~ 1
HR)Y="-§ ———
(k) R, ; 27ﬂet)2+a (77)

Figure 3 shows the MTF for the sayeandy, as in
Fig. 2. Using the definition Eq. 15 one writés,,, as

q;
m

Ht/r)?+o? (78)

Ho Rzeﬁm+
The scattering length, defined as the average lateral

distance a photon travels before exiting the paper, using
Eqg. 24 is

(p) =

a0l

2R, 4 (79)

As indicated earlier, g>"tis approximately the spa-
tial bandwidth of the paper. Figure 4 shows a plot of
<p>/I" as a function of the thickness of the papkt=

h T In the figure, the mean free patks held constant hile
l}pe paper thickness is varied. For a given mean free
path, the scattering Iength increases as the paper thick-
ness increases. If there is no absorption, the scattering
length increases without bound ag>=0Ot - . The
distance the photons migrate is limited by the transmis-
sion through the far side as can be inferred from Fig. 1.
If absorption occurs, however, the scattering length reaches
a limit fort — o as shown in curves 4(b) an¢c¥.
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Figure 5. Scattering lengtkp> as a function of optical thick-
nessrt, paper thickness t constardo> in units of grid period
r. (a) t/r = 0.25, (b) t/r = 0.5, (c) t/r = 1.0, (d) t/r = 2.0.

Figure 5 shows g> as a function of the optical thick-
ness (paper thickness held constant) for several diffe
ent screen periods, wher@xis expressed in units of
grid spacingr. Recall that the ratiopg>/r determines

the degree of optical dot gain. One sees, as expected, the

scattering length decreases with the optical thickness:

Note that our model satisfies the conservation of en- ot
ergy: withy, = 0 the total reflectance plus transmittancg ,,|
is equal to 1. The total reflectance is the diffuse reflectance,

Eq. 74, plus the reflectance of the injected photons

(1- Ry)Ry exp(-21)
1- R% exp(-27)

R, (injected) =

so that the total reflectance is

(1- Ry)Ry exp(-21)
1- R% exp(-21)

(80)

R, (total) = % g, / o>+

0.8
LX)
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06} injected
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0.4 |
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Figure 6. Transmittance of diffuse and injected photons as a
function of optical thicknesswith y, = 0.
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Figure 7. Reflectance and transmittance of diffuse and injected
photons as a function of optical thickneswith y, = 0.

Figure 6 shows the transmittance of injected pho-

The transmittance is the total flux emitted from thetons and diffuse photons as a functiort of

lower surface divided by the incident flux and consists

of the diffuse transmittance plus the transmittance of in
jected photons. The diffuse transmittance is

T, (diffuse) = (1/ S)(1~ Rp)f kG_(p,t)dA. (81)

Using Egs. 47, 54, 69 and 73:

T, (diffuse) =y (-1"**'q, / 0;. (82)

The transmittance of injected photons is

(1- Ry )exp(-1)

T (injected) = s
pty 1- R% exp(-21)

so that the total transmittance is

(1- Ry)exp(-T1)

T (total) = -)"*lq /o? + )
» (total) %() q,/ 0y, 1= R exp(-27) (83)
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It can be shown numerically using Egs. 80 and 83
thatify, =0

Rp(total) +Tp(total) =1 (84)

independent of any of the paper’s other parameters. Fig-
ure 7 shows (total) andTp(totaI) as a function of.

The scatfering and absorption coefficieptsandy,
can be fixed for a particular paper by equating the mea-
sured transmittance and reflectance of the paper to the
calculated values as given by Eqgs. 80 and 83. Using stan-
dard technique¥, one measures the reflectance of the
paper against a black background to Beaind the re-
flectance off a stack of papers gives The measured
transmission is then given by

T,=|(1/R,~R,) (R,~R,). (85)

Note that if the specular reflectance is excluded in
the measurements 8 andR_, then only the first terms
of Egs. 80 and 83 should be used.
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Figure 8.1fZ and 1> as a function ofi, where(fZ is the line

and (> are the boxes. (a)'=2,y,=0,and t/r = 1; (b)y,' =

12,y = 0.2 and t/r = 1. Figure 9. The parameter s as a function of optical thickiress
for variousy, t/r. (a) yit = 0.2, t/r = 0.75; (b)y,t =0, t/r =
0.75; (c)yt = 0.2, t/r = 1.25; (d)y,t = 0, t/r = 1.25.

The calculations of this section have assumed black
backing, i.e., none of the transmitted flux is reflected  %®f
back into the paper. If there is a backing with non-zero  ss}
reflectance, then the equations of this section must be
modified. In fact, flux reflected off the backing decreases
the paper’s spatial bandwidth. If the paper lies on a sur- 28}
face with reflectanc® , then some of the outward flux =z s}
is reflected back into the paper so that the inward flux
on the lower surface of the paper is the outward flux
multiplied byR . The boundary condition for the lower 63 fa)
surface is in this case 0zl

07}

04}

01 (el

k [§_(p,t) = Rpk [, (p,t) + (1~ Rp)Ryk (. (p,0), (86)

where the first term on the right represents the internally eroez 03 ;’4 0s e T
reflected flux and the second term represents the flux '
reflected by the backing. (This ignores any multiple re-igure 10. Halftone reflectance as function of percent area
flection between the backing and the paper.) Using Eqgovered by ink. (a) Comparison & as calculated with?
47 and 43, this can be expressed as (solid line) andurs (boxes);T = 12, y,t = 0.2, and s = 0.53.
Also shown are the reflectances for no scatteringdl) 1
c D J *(s = 1) and complete scattering ()= 1, (s = 0). The ink
Zu(P,t) +Egu(ﬁ>,2)|z:t= transmittance is J= 0.01 and t/r = 1.
e D9 0(87)
Ry +(1-Rp)R t)——— -
[Br + (1= Rp)Ry | rulp,t) -5 —-u(p,2)] o= 5
Halftone Reflectance with Diffusion PSF
Defining
3 1-Ro—R +RoR One is particularly interested in the serigskEq. 22,
=2 P~ Fh because this factor contains the effects of the optical dot
21+ Rp + R, - RpR, gain. As noted in the discussion preceding Egs. 25 and
; ; .. 29 if there is no scattering @§=/r = 0) thenZ (p) =
one obtains the homogeneous mixed boundary condltloénd for complete scattering@s/r >> 1)Z (1) = 1. This
for the bottom surface . .
suggests thaZ may be approximated hy raised to a

5

P negative power between 0 and 1:
u(p,t) + Eﬁ_u(p’ Z)lz:t =0. (88)
: _ Z(W=p* (90)
The equation defining the eigenvalues in this case is with 0<s<1 (91)
¢ _1(6+9d)Y, In fact, this is a very good approximation foras
At = s (89)  calculated with the diffusion PSF. Figure 8 shows the
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curvesp? Z (W) andu-sversugu for a moderate degree of By examining these expressions f&;(u) and
optical dot gain. The parameter 5is an index of opti- R, (u), one can infer a physical meaning for the series
cal dot gain. If 1 s= 0, no scattering and no optical dot Z.
gain occur (see Eg. 30), and for 1s= 1 the light is The physical interpretation @ is motivated by con-
“completely” scattered and maximum optical gain oc-sidering the probabilities that a photon is reflected from
curs (see Eq. 26). Figure 9 shows the paransetera an inked or a noninked region. We can defihé) [or
function oft for several/r. P.(n)] as the probability that a photon is reflected from
Figure 10 shows the halftone reflectance Eq. 21 usan inked [or noninked] area amy(i) [or P (n)] as the
ing the diffusion PSF. Also shown in the figure are Eqsprobability that a photon is incident on an inked [or
30 and 27 for the case of no scattering and completeoninked] area. We can define the conditional probabil-
scattering for comparison. Also shown is the reflectancéy P(i|i) [or P(i|n)] as the probability that if a photon
with a best fitsin p2=s In all curves, the halftone reflec- originally entered the paper through an inked area, it exits

tance in given in terms of the paper reflectam_Z:ERp. the paper through an inked [or noninked] areaR{(mii)
[or P(n|n)] as the probability that if the photon origi-
Dot and Non-Dot Reflectance nally entered the paper through a noninked area, it exits

the paper through an inked [or noninked] area. To value
There has been some interest in expressing optical ddf can be interpreted as the conditional probability that
gain in terms of an expanded Murray-Davies mddal. if a photon enters or exits an inked area, it is transmitted
this model, the average reflectance of inked aRag) through the ink. Then the following relations hold
and noninked area®, (u) are functions of dot size. In

the following, we express the expanded Murray-Davies P.(i) =P ,(n) P(n|i) T, + P(i) P(ili) T2 (97)
model in terms of the theory developed here and use this
model to give a physical interpretation of the sedes P.(n) =P,(n) P(n|n) + P (i) P(i|n) T, (98)

__ The total reflectance from a region is the sum of
R;(w) and R, (u), weighted by their relative contribu- (For simplicity, we IelRp = 1.) Clearly,

tions
Ri)=p R =1-p (99)

R =R, (W) +(1- R, (W), (92) and B B
Pr(@)=pR;(p) Pr(n)=(1-wR,. (100)
wherep is the fractional area covered by ink and|lis
the noninked area. One can fi®}(u) and R, (u) by  The conditional probabilities are related in that

averagingR(x,y) over the inked and noninked areas, re-

spectively P(ili) + P(i|n) = 1, (101)
— _ 1 ; —
R = W JC(x,y)R(x, y)dA (93) P(nli) + P(n[n) = 1, (102)
and and a “detailed balance” holds
— _ 1 . . _ .
B = s e (1 C @ DR dA, - (94) R(i) P(iln) = P,(n) P(ni). (103)

If we definef3 = P(i|i), then by Eq. 101
wherep(Nr)? is the area that is inke@;(x,y) is 1 if the
pointx,yis in an inked area and 0 otherwise, Eq. 4; and P(in) =1 -B (104)
R(x,y) is the point reflectance, Eq. 7. Note that

[C (x.Y]?=C(x.y)

and by Egs. 99 and 103

and

Pl =—+—1-p) (105)
1 1-
P(nln) = 1——1:1 (1-B). (106)
(Nlr)z JCx, y)P(x, y)dA = WZ (W)
Inse(ting Egs. 104 through 106 into Egs. 97 and 98 one
Carrying out the integration in Egs. 93 and 94, oneObtalns _

obtains R, (W) =T,o[1-(1-Ty)B], (107)

and 1-u

Comparison of Egs. 107 and 108 with Egs. 95 and
96 shows thaf = uZ ; one interpretgiZ as the probabil-

= | v t
R,(W=R,A-1-T,) (1-p2)
P pg‘ 0 1‘“ “ % (96)
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ity that a photon on entering a dot will exit through the In addition, we are currently applying the theory to

dot. Specifically, we can interprgét! as an effective scat- a color halftone print.

tering areaZ™' = y_, The scatter of photons within the _

paper increases the size of the area from which the pho- Appendix

ton might exit the paper after having entered through a

dot. This larger area is the scattering griga The prob-  In the following we show how internal reflectance within

ability that a photon exits through the dot is the ratio ofpaper can be characterized by an effective reflectance co-

the dot sizeu to the scattering sizg, , P(ili) = Wi, efficient® and expressed in terms of a boundary condition.

Hence, ifZ! = y, the scattering area is the same as the For papers considered here, the volume ratio of air

physical dot size: no optical dot gain.4f* = 1, then to fiber is approximately 1. We can, therefore, take the

the scattering area is equal to the size of the screen cetlaper medium as cellulose and consider the internal re-

the photons are completely scattered. flectance that occurs at the paper surfaces when light
As indicated above, Eq. 9(X is a good approxima- passes from within the paper to outside the paper. In-

tion to 1Z whenZ is calculated using the diffusion PSF. cluding internal reflection partially accounts for the lay-

When this approximation is used the dot and nondo¢red structure of paper. The reflectance is given by the

reflectances are Fresnel reflection coefficient, which is a function of the
_ angle at which the photons approach the surface. This
R,(W=R,Ty[1-(1- To)ui™] (109) reflected flux can be considered incoming at the surface,

and so that the partial current into the paper at the surface is

equal to the outgoing flux times the Fresnel reflectance.
R,(W=R,[1-(1-T,) L (1-pts). (110) Our treatment closely follows that of Haskell et®al.,
1-p except here we include the effects of a rough surface.
. = s . Effective reflectance can be obtained by averagin
Th? expression foR; (w is identical to thg phenomeno- over all angles. For the top surface this is u};ing qu 42
logical expression used by Arney et'at fit their data. ' ' T
The expression foR, (u) is not the same as theirs, how-
ever, the difference in numerical value is small. k. (p,0) =

[0 Br(0)fq(p,0;8)s hdQ,

(A1)
Conclusion
In the preceding, we have developed a theory of op-
tical dot gain. The theory is expressed in terms of amvheref is defined by co®= sh, with n the (outward)
effective dot sizeZ™, which is a measure of the migra- unit vector normal to the surface. The valy¢aRis the
tion of photons within paper. We have derived a PSF byresnel reflection coefficient for unpolarized light
solving the transport equation in the diffusion approxi-
mation. The PSF is a function of two experimentally
determined parameters that describe the scattering and R.(6) _ 1[kin(6- o) , 10tan(6 - o)
absorption characteristics of the paper. FY2 79 %jn(eJ, g')H 9 E{an(9+ 9')5 ’
Several ways exist to improve the model. We as- if 0<6<6 (A2)
sumed that the paper was homogeneous and isotropic, -
which is clearly not the case for real papers. In real pa- = L if 6.<6sm/2
pers a significant degree of flocculation exists that re-
sults in local variation in grammage. In addition, thewhere@' is given by Snell’'s Law sin@ = sird’, n is the
paper-forming process gives significant orientation to théndex of refraction of cellulose = 1.5, and6_ is the
fibers that results in directionality. There has been a lotritical angle for total internal reflection given by €in

of recent work on the statistics of fiber distributi3ft = 1/n.
and an improvement in our model would incorporate this  Eq. Al is a good approximation only if the normal
work. is parallel to the axis. In fact, the (uncoated) paper sur-

As indicated earlier, the paper fibers are flattenedace is rough and the surface normalwill vary from
with a width-to-thickness ratio of 10 and the fibers lie inpoint to point. This tends to decrease the effective Fresnel
the plane of the paper. This results in a layered structumeflectance. An effective reflectance is more accurately
with transport properties in the vertical direction differ- obtained by averaging Eq. A1 ovér. One can define a
ent from those in the horizontal direction. This structurenormalized probability density(n) that gives the prob-
is dealt with only partially in the current theory. In par- ability per unit solid angle that the normal has direction
ticular, the internal reflection within the fibers will be n. By our assumption of paper isotrop§(n) is inde-
significantly different in the two directions. This differ- pendent of the azimuthal angle f and can be written
ence in internal reflection tends to increase the horizon-
tal flow of scattered photons over the vertical; the net P(h) :iP(coseA)
flow of photons in the plane of the paper is greater than 2m no
that in the perpendicular direction. For a given trans- .
mission, this will result in a decreased spatial bandwidthwhere 6, is defined by co§,; = nk
An improved model would take into consideration this  Averaging Eq. Al ovem,
layered structure of papér.
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k(3.(p,0) =
fains frano Br(0:)a(p.0:88 BPHIdd,, PP

and expanding both sides of Eq. A3 using Eqgs. 39 an]q)r

Eg. 47, one obtains

§u<p,0>+%fc G3(p,0) =

- A4
Ru§u<p,0)—ﬁsz%k G(p,0), (A4)
where
R, =2["" Ry(6)cosOsin do,
R, = 310"/2 Ry (6)cos? @sin 8 d,
and
n, = IOH/Z cos Bsin 6P (cos 6)d0,
which can be written as
¢ wpty+ LR o =0
1P TR pst) =0. (A5)

Defining the effective Fresnel reflection coefficient as

R = ﬁZRj +R,
FT9Yn,R,-R,’ (A6)
this becomes
c 11+Ry
~u(p,0)+= L N 0=0
4u(p, )+2 1= Ry 0(p,0) (A7)
or
k(3,(p,0) = —Ryk GG_(p,0). (A8)

One analyzes the bottom surface in a similar manner to

obtain, using Eq. 45
k0§, (p,t) = Ryk GG_(p,0).

To evaluateR_, one must choose a suitati?écos). If
the paper is coated, th@&fcoD)sin6dd = P(x) dx = &(x

— 1)dx, with P(x) defined on the interval [0,1]. In this case
(flat surface) obviouslyz, = 1. Even for uncoated paper
one expects th&(x) is sharply peaked at= 1, because
the fibers are flattened in the paper-making proéess.

(A9)

A simple model of the noncoated paper surface treats
the fibers as elliptical rods, i.e., rods with elliptical cross

section lying in the plane perpendicular to trexis and
the major axis also in the plane perpendicular tozthe
axis??2 The average component of the normal is then
found by averaging over the upper half of the elliptical
curve. Assuming uniform probability for the angle that

parameterizes the elliptic curve, a straightforward cal-

culation gives

n. =

z

arctanye? - 1,

2
m

=

4
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with ¢ the ratio of the major to minor radii. One sees
that the flatter the fiber iss(-» ), thenn, - 1. The
ratio of fiber width to thickness is typicafye = 10, and
one obtainsz, = 0.941.

With this value ofr,, and the index of refraction
cellulosen = 1.5, one obtains foR_ the valueR_ =
0.574.

We need also the reflectance for the injected pho-
tonsR . By our model, these photons are normally inci-
dent on the paper surface and the reflectance is given by
Eqg. A2 for8 =0, or

~1
R :@ngo.m.
N n+1

Nomenclature

(A10)

normalization factor for ¥2), Eq. 62

shape function for circular dots, Eq. 6
array function equal to 1 if point,y is
covered by ink and 0 otherwise. It is a con-
volution of the dot distribution function and
the dot shape function, Eq. 4

radius of circular dots

diffusion coefficient, Eq. 44

a parameter that expresses the effective in-
crease in mean free path due to internal
reflection, Eq. 56

photon distribution, Eq. 35

injected photon distribution, Eq. 36

diffuse photon distribution, Eq. 39

diffuse photon flux through paper top sur-
face, Eq. 70

anisotropy parameter for phenomenologi-
cal phase function, Eq. 32

dot distribution function, Eq. 5

Green'’s function solution to diffusion equa-
tion, Eq. 60

scattering and absorption coefficients for
paper, Eq. 31

effective scattering coefficient, does not in-
clude forward scattered photons, Eq. 34
transport coefficient, inverse of transport
mean free path, Eq. 34

radial point spread function (PSF), Egs. 2
and 75

modulation transfer function (MTF), Fou-
rier transform of the P?E, Egs. 12 and 77
MTF evaluated ak = Vn? +m? /r, Eqs.
15 and 78

diffuse photon current density, Eq. 41
partial photon current densities, Eqgs. 45
and 46

Fourier transform of dot shape function
norma ized to ,] = 1, evaluated ak =
Vn2+m? /r, qui). 14 and 23

spatial frequency in lines/unit length
modified Bessel function of the second kind
transport mean free path, distance over
which velocity relaxes

line spread function, Eq. 76

phase of \(2), Eq. 64

g

f(r, s)
f(r,s)
f(r,s)
F_(@

ax,y)=
Glpzp 2=

Yo Ya =
A

Ve
H(p)

H(k)

'IfInm
1%
1.(r)=
J =

nm

x X
o

*

—~
X
<

>

>



M = dot area fraction 2.

i, = eigenvalue of longitudinal differential op-
erator, Eq. 63 3.

n = Yule-Nielsonn-parameter (section on Half-
tone Reflectance only); index of refraction 4.
(everywhere else)

P(a),P(a), = probability a photon is reflected from or in- 5.
cident on regiora, with a =i (inked) orn 6.
(noninked), Eqgs. 99 and 100 7.

P(alp) = probability that if photon enters paper
througha it exits paper through, Egs. 97 8.
and 98

p(s, s¢) = phase function, which is the normalized 9.
differential scattering cross section, Eq. 32

¢(2 = orthonormal eigenfunctionin Green’s func- 10.
tion expansion, Eq. 61

g, = expansion coefficient for diffusion PSF, 11.
Eq. 73
r = screen period 12.
R(x,y) = reflectance ax,y, Eq. 22 13.
r = reflectance averaged over a region, Eq. 21
R, = average reflectance of inked regions,14.
Eq. 93 15.
R, = average reflectance of non-inked regions,
Eq. 94 16.
R = reflectance of bare paper, Eq. 74 17.
R. = effective Fresnel reflection coefficient,
Eq. A6 18.
R, = internal normal reflectance of injected pho-
tons, Eg. A10 19.
<p>= lateral scattering length, Eqgs. 24 and 79
S(r)= source function for diffuse photons, Eq. 38
s, = eigenvalue of radial differential operator, 20.
Eq. 65
t = paper thickness 21.
T(x,y) = transmittance of ink layer aty, Eq. 23
T, = transmittance of ink 22.
Tp = paper transmittance, Eq. 83
t = optical thickness of paper, number of trans-23.
port mean free paths in paper thickness,
Eq. 55 24,
u(r)= diffuse photon density, Eq. 69
Z = Z-series, Eq. 22 25.
26.
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